Modal Abstractions in uCRL*

Jaco van de Pol and Miguel Valero Espada

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{Jaco.van.de. Pol,Miguel.Valero.Espada}@cwi.nl

Abstract. We describe a framework to generate modal abstract approx-
imations from process algebraic specifications, written in the language
HCRL. We allow abstraction of state variables and action labels. More-
over, we introduce a new format for process specifications called Modal
Linear Process Equation (MLPE). Every transition step may lead to a set
of abstract tates labelled with a set of abstract actions. We use MLPEs
to characterize abstract interpretations of systems and to generate Modal
Labelled Transition Systems, in which transitions may have two modal-
ities may and must. We prove that the abstractions are sound for the
full action-based p-calculus. Finally, we apply the result to check some
safety and liveness properties for the bounded retransmission protocol.

1 Introduction

The theory of abstract interpretation [4,13] denotes a classical framework for
program analysis. It extracts program approximations by eliminating uninter-
esting information. Computations over concrete universes of data are performed
over smaller abstract domains. The application of abstract interpretation to th_e
verification of systems is suitable since it allows to formally transform possi-
bly infinite instances of specifications into smaller and finite ones. By loosing
some information we can compute a desirable view of the analysed system that
preserves some interesting properties of the original. _
The achievement of this paper is to enhance existing process algebraic veri-
fication tools (e.g. LOTOS, pCRL) with state-of-the-art abstract. interpretation
techniques that exist for state-based reactive systems. These techniques are based
on homomorphisms [3] (easier to use) or Galois Connections [16, 5, 12,9] (more
precise abstractions). The latter are sound for safety as well as liveness prop-
erties. A three-valued logic ensures that the theory can be used for proofs :cmd
refutations of temporal properties. We transpose this to a process algebra settt,mg,
allowing abstraction of states and action labels, and treating homomorphisms
and Galois Connections in a uniform way. A preliminary step was already f*,aken
in [7]; those authors show how process algebras can ben'eﬁt from abstract mter(;
pretation in principle. To this end they work with a basic LOTOS language an

* i h program of the
Partially supported by PROGRESS, the embedded systems researc :
Dutch organisation for Scientific Research NWO, the Dutch Ministry of Economic

Affairs and the Technology Foundation STW, grant CES.5009.

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 409425, 2004.
© Springer-Verlag Berlin Heidelberg 2004

410 Jaco van de Pol and Miguel Valero Espada

a simple temporal logic; their abstractions preserve linear-time safety properties
only.

}éemantically, our method is based on Modal Labelled Transition Systems [15].
MLTSs are mized transition systems in which transitions are labelled with ac-
tions and with two modalities: may and must. They are appropriate structures
to define abstraction/refinement relations between processes. May transitions
determine the actions that possibly occur in all refinements of the system while
must transitions denote the ones that necessarily happen. On the one hand, the
may part corresponds to an over-approximation that preserves safety properties
of the concrete instance and on the other hand the must part under-approximates
the model and reflects liveness properties. We define approximations and prove
that they are sound for all properties in the full (action-based) p-calculus [14],
including negation. We had to extend the existing theory by allowing abstrac-
tion and information ordering of action labels, which is already visible in the
semantics of p-calculus formulas. This is treated in Section 2.

This theory is applied to uCRL specifications [10], which (as in LOT'OS) con-
sist of an ADT part defining data operations, and a process specification part,
specifying an event-based reactive system. Processes are defined using sequen-
tial and parallel composition, non-deterministic choice and hiding. Furthermore,
atomic actions, conditions and recursion are present, and may depend on data
parameters. The uCRL toolset [1,2] transforms specifications to linear process
equations (LPE). An LPE is a concise representation of all possible interleavings
of a system in which parallel composition and hiding are eliminated. Several
tools that manipulate LPEs have been developed; they do, for example, sym-
bolic model checking, state space reduction, confluence analysis, etc... The uCRL
language and tool set have been used in numerous verifications of communica-
tion and security protocols and standards, distributed algorithms and industrial
embedded systems.

We implement abstract interpretation as a transformation of LPEs to MLPEs
(modal LPEs). MLPEs capture the extra non-determinism arising from abstract
interpretation. They allow a simple transition to lead to a set of states with
a set of action labels. We show that the MLTS generated from an MLPE is a
proper abstraction of the LTS generated from the original LPE. This implies
soundness for p-calculus properties. Section 4 is devoted to this part. The next
figure shows the different possibilities to extract abstract approximations from
a concrete specifications.

1

concrete spec (LPE)

concrete system (LTS)
(4)) (2)

5
abstract spec (MLPE))

abstract system (MLTS)

Modal Abstractions in uCRL 411

From a concrete system, encoded as an LPE, we can:

— Generate the concrete transition system (1), from which we compute the
abstraction (2). This solution is not very useful for verification because the
generation of the concrete transition system may be impossible due to the
size of the state space.

— Generate directly the abstract Modal-LTS (3), by interpreting the concrete
specification over the abstract domain. This solution avoids the generation
of the concrete transition system.

— First, generate a symbolic abstraction of the concrete system (4), and then
extract the abstract transition system (5).

Typically, standard abstract interpretation frameworks implement the second
approach, however we believe that the third one is more modular. MLPEs act as
intermediate representation that may be subjected to new transformations. Fur-
thermore, MLPEs can be encoded as LPEs thus our method integrates perfectly
with the existing transformation and state space generation tools of the uCRL
toolset. Also, the three valued model checking problem can be rephrased as the
usual model checking problem, along the lines of [9]. This enables the reuse of
the model checkers in the CADP toolset [8]. The latter two transformations are
not detailed in the current paper.

The main part of the theory mentioned above has been defined and proved
correct in an elegant way using the computer assisted theorem prover PVS [18].
The use of the theorem prover gives extra confidence about the correctness of the
theory. Furthermore, the definitions and proofs can be reused to easily extend
the theory, to prove other transformations, or to apply the same techniques to
another specification language. Also, this prover could be used to prove the safety
conditions generated for user-specified abstractions.

To improve usability, we have predefined a few standard abstractions. Of
course, the user can define specific abstractions, which in general lead to the
generation of safety conditions. Finally, thanks to the uniform treatment, the
tool can automatically lift a (predefined or user specified) homomorphism to a
Galois Connection, thus combining ease with precision.

As running example we use a simple system in which two processes com-
municate by sending natural numbers through a channel described as a FIFO
buffer of size IV, see the figure below. The system has two sources of infinity:
the size of the buffer and the value of the data, which should be abstracted
if we want to apply model checking techniques to its verification. Finally, we
demonstrate the method by checking some safety and liveness properties of the
bounded retransmission protocol in Section 5.

0 1 N
Write(S) - Read(7)

O 5177 NO

producer - consumer

412 Jaco van de Pol and Miguel Valero Espada

2 Transition Systems

Part of the results included in this section are well known in the field of ab-
stract interpretation. We adapt classical frameworks for generating safe abstract
approximations, by doing a non-trivial extension of them in order to allow the
explicit abstraction of action labels which will permit to manipulate infinitely
branching systems. First, we start by defining some general concepts and then
we continue by introducing the two abstraction techniques.

The semantics of a system can be defined by a Labelled Transition System. We
assume a non-empty set S of states, together with a non-empty set of transition
labels A:

Definition 1 A transition is a triple s = s’ witha € A and 5,8’ € S. We define
a Labelled Transition System (LTS) as tuple (S, A, —, so) in which S and A are
defined as above and — is a possibly infinite set of transitions and so in S is the
initial state.

To model abstractions we are going to use a different structure that allows
to represent approximations of the concrete system in a more suitable way. As
introduced before, in Modal Labelled Transition Systems transitions have two
modalities may and must which denote the possible and necessary steps in the
refinements. This concept was introduced by Larsen and Thomsen [15]. Let us
see the definition:

Definition 2 A4 Modal Labelled Transition System (MLTS) or may/must la-
belled transition system (may/must-LTS) is a tuple (S, A, —o,—na, So) where
S, A and so are as in the previous definition and —o,—g are possibly infinite
sets of (may or must) transitions of the form s -3, s’ with 5,8 € S, a € A
and z € {<,0}. We require that every must-transition ts a may-transition
(—~aC-5).

MLTSs are suitable structures for stepwise refinements and abstractions. A
refinement step of a system is done by preserving or extending the existing must-
transitions and by preserving or removing the may-transitions. Abstraction is
done the other way around. To every LTS corresponds a trivially equivalent
MLTS constructed by labelling all transitions with both modalities; we will call
it the corresponding concrete MLTS.

Having a set of states S and a set of action labels A with their corresponding
abstract sets, denoted by S and A, we define a homomorphism H as a pair of
total and surjective functions (hg,ha), where hg is a mapping from states to
abstract states, i.e., hg: § — S , and h4 maps action labels to abstract action
labels, i.e., hg : A — A. The abstract state § corresponds to all the states s for
which hg(s) = §, and the abstract action label @ corresponds to all the actions
a for which h4(a) =a.

Definition 3 Given a concrete MLTS P (S,A,—¢,~—n,s0) and a mapping
H, we say that P defined by (S, A, —¢,—a,50) is the minimal may/musty-

abstraction (denoted by P = ming(P)) if and only if hs(so) = So and the
following conditions hold:

Modal Abstractions in uCRL 413

o <= 3s,1,a.hs(s) =5Ahs(r) =FAha(a) =TAs Do r
of <= Vshs(s) =5 (3r,a.hs(r) =FAha(a) =GAs Do)

|
»))
o o

This definition gives the most accurate abstraction of a concrete system by using
a homomorphism, in other words the one that preserves most information of the
original system. The figure below shows, on the left side, the concrete MLTS
corresponding to the buffer model!. In the middle we see the minimal abstraction
of the system by only abstracting states with hg defined as follows: it maps the
initial state to the abstract state e, which means empty, the states in which
there are N entries in the buffer to f, which represents full, and the rest of the
states to m, which means something in the middle; we can see that the resulting
abstract system is infinitely branching, therefore in order to be able to do model
checking to the system we need also to abstract the action labels. We define h 4
as follows: it maps all the write actions to @ and all the read actions to 7. On the
right side, we see the result of applying both abstractions. In the final system,
we have removed all the information about the values that are in the buffer and
the transferred data, only preserving the information about whether the buffer
is empty, full or none of them. This abstraction allows to have a small finite
model which keeps some information about the original. The example clearly
illustrates the importance of the abstraction of action labels.

Instead of using mappings between concrete and abstract domains we can define
relations. The other classical approach we present is based on Galois Connections
between domains, and it was introduced in the late seventies by Cousot and
Cousot [4], see also [5] for a good introduction. Two functions a and « over two
partially ordered sets (P,C) and (@, <) suchthat : P —» Qand y: Q — P
form a Galois Connection if and only if the following conditions hold:

1. « and + are total and monotonic.

2. Vp: Pp Cyoa(p).

3.VYg:Q,a07(q) < ¢

! For clarity we use dashed lines to represent may transitions and normal lines to

represent must transitions. Note that when there is a must transition we do not
include the corresponding may one.

414 Jaco van de Pol and Miguel Valero Espada

a is the lower adjoint and + is the upper adjoint of the Galois Connection, and
they uniquely determine each other. Galois Connections enjoy suitable properties
to perform abstractions. Let P(S) and P(A)Abe parﬁially ordered sets ordered by
the set inclusion operator and the abstract S and A both being posets equipped
with some order <. The order gives a relation of the precision of the information
contained in the elements of the domain. We define a pair G of Galois Connec-
tions: G = ((as,7s), (@4,74)). @ is usually called the abstraction function and
~ the concretization function. As in the previous case we define the minimal
abstraction, as follows:

Definition 4 Given two systems P and P defined as in definition 3 and a pair
of Galois Connections G, P is the minimal may/mustg-abstraction (denoted by

P= ming(P)) if and only if so € vs(S0) and the following conditions hold:

o Jo

oF <= Iseys(5), revs(h), a € va(@).s 2o T
a

s
555 F < Vsens(5).(3reqs(?), a €va(@).5s >ar)

The following figure presents a part of the minimal abstraction of the buffer
system?. On the left side we can see the two abstract lattices, and on the right
side we see the transitions corresponding to the abstract write and read actions.
The abstract lattices are: {L,e,m, f,nE,nF, T} and {L,®,7, T}, the Galois
Connection is trivially defined following the previous example and considering
that nE represents the states in which the buffer is not empty and nF in which
it is not full.
T
/ N\
nF nE

JAAVAN
N
L

-
)

\ ./

Due to the order over the abstract states and actions, the minimal system defined
by the above presented definition is saturated of may and must transitions, i.e.
there are transitions that do not add any extra information. We can easily see in
th(i previous figure that the must part is saturated for example, the transition

e g nE does not add any information because we have e 55 m which is more
precise. We can restrict our definition by requiring that the abstract transitions

2 s . et 7] 7
For readability, we separate write transitions: -5 and read transitions — and we do
not include transitions to and from T, or labelled with it.

Modal Abstractions in pCRL 415

are performed only between the most precise descriptions of the concrete tran-
sitions as done in [5]3. In the previous ﬁgure, this would remove: e -—><> o nF,
e—+<>u nk, m—><> nkF, m—+<> nk, f——><>gnF f—+<>g nE, nF —~><> nF and

nE %o nE. We call the system in WthhAaH redundant transitions have been
eliminated restricted and it is denoted by P|.
We formalize now the approximation relation between MLTSs:

Definition 5 Given two MLTSs P (S, A, —¢,—0a,%) and Q (S,4,—¢,—a
,50) built over the same sets of states (S,xs) and actions (A,<a); Q is an
abstraction of P, denoted by P Ty Q, if the following conditions hold:

a ’
-Vs,a,m,8.8 201 ANs<ss = a1 BeorAr<gsr Aa=<ad
al
- Vs,a,rs.8 2gr'As<ss = JarsSgrAr<sr Aa<asa
H

P Eg @ means that @Q is more abstract than P and it preserves all the infor-
mation of the may-transitions of P and at least all must transitions present in
Q are reflected in P. The may part of Q is an over-approximation of P and the
must part is an under-approximation. The refinement relation is the dual of the
abstraction. Note that for the homomorphism approach there is no order defined
between states or actions so we substitute by =.

3 Logical Characterization

To express properties about systems we are going to adapt the highly expressive
temporal logic (action-based) p-calculus [14] which is defined by the following
syntax, where a is an action in A:

pu=T|F|-p|oiApa |1V |ae]|(a)e|Y | pYp| vy

Formulas are assumed to be monotonic. Following [12], a given formula is inter-
preted dually over an MLTS, i.e. there will be two sets of states that satisfy it. A
set of states that necessarily satisfy the formula and a set of states that possibly
satisfy it. Thus, the semantics of the formulas is given by [¢] € 2° x 25 and the
projections [¢]™*® and []P° give the first and the second component, respec-
tively. We show below the simultaneous recursive definitions of the evaluation of
a state formula. In the state formulas, the propositional context p : ¥ — 25 x 25
assigns state sets to propositional variables, and the @ operator denotes con-
text overriding. Note that the precision order between action labels plays an
important role in the definition of the semantics of the modalities.

3 The main difference with Dams’ approach is that we preserve the condition —5gC—5.

416 Jaco van de Pol and Miguel Valero Espada

iFl. =09

[, =55 |

[-¢l, = (S’\[[(p]]g” ,S\[[(p]];‘“) (Note the switch of pos and nec)

lor Aol = ({erl3ee N 23, [1]5 N [[<P2]]}3::)

ler v eal, = (o3 ULl a5 U [p2]2%)

llalel, = {s|Vrad.a<xa As ST =>TE lelzets

{s|Vrd.d' xan sSar=re g}

la)el, =({s|3ra.a'xans SarATE lelnec},
{s|3rd.axa AsSorArE [p]E})

IYl, =n) , et e ;
[LYol, =(N{S'CS|8yc(S)C S N{S'C S| PE(S") C8'})
[Yol, =(U{S'CS|S Came(s) LS C S| S C azos(57)})

where 82 : 25 — 25 with z € {nec, pos}, #2(S') = IIQ"]](IPQ[S'/Y])

We say that a state s necessarily satisfies a formula ¢, denoted by s ="e¢ o iff
s € [p]™ and dually s possibly satisfies a formula ¢, denoted by s =P ¢, iff
s € [p]P°°. We remark that from the semantics of the negation follows:

— s necessarily satisfies - iff s not possibly satisfies (.
— s possibly satisfies ~¢ iff s not necessarily satisfies (.

It is not difficult to see that if s necessarily satisfies a formula ¢ then also s
possibly satisfies ¢. This follows from the fact that every must-transition is also
a may-transition. Without this condition we would be able to prove s ="¢¢ ¢ and
s |=™%¢ —p for some ¢ which will lead to an inconsistent logic. In fact, it cannot be
proved for any ¢ s =" ¢ and also s =" -, i.e. the necessarily interpretation
is consistent and it is always possible to prove s E=P°® ¢ or s =P°® —¢ which
means that the possibly interpretation is complete. The semantics gives a three
valued logic:

— s necessarily satisfies .
— s possibly satisfies ¢ but not necessarily satisfies .
— s not possibly satisfies ¢.

Since the abstraction of a system preserves some information of the original one,
the idea is to prove properties on the abstract and then to infer the result for
the original. Since action labels occur in p-calculus formulas, formulas over 4
are distinct from formulas over A. Therefore, we need to define the meaning of
the satisfaction relation of an abstract formula on a concrete state: [@le where
€ is either h4 or a4 depending on whether we use a homomorphism or a Galois
Connection. [¢]¢ gives the set of concrete states that (necessarily or possibly)
satisfy an abstract formula. An extract of the necessarily semantics is given
below, note that for the rest of the cases (T, F, A, V and fixpoints) the definition
does not change, and the possibly semantics are dual:

Modal Abstractions in pCRL 417

[[a]plgee = {s|Vraa<xé{a})AsSor=>re @12}

[(@)@lz* = {s|3r,a.£({a}) S GAs SgrAre [@lzec}

A concrete state s necessarily satisfies the abstract formula @, denoted by s e
@, iff s € [P]g°°. And dually, s Fi° 3, iff s € [218°°. Now we can give the
property preservat).on result:

Theorem 6 Let P be the MLTS (S, A, —¢,—a,s0), X be either a homomor-
phism H = (hs, ha) between (S, A) and (S, A)) [in which case ¢ stands for hf or
a Galois Connection G = ((as,vs), (aa,74)) between (P(5),P(A)) and (8, 4)
[in which case & stands for o and let P| (over § and A) be the minimal (re-
stricted) abstraction of P. And finally let § be a formula over A, then for all
p€S and p€ S such that £({p}) < P

- PR PR p
- PRSP P

The proof follows from the fact that every may trace of P is mimicked on P by
some related states and, on the other hand, every must trace of P is present in
P. We refer to the technical report [19] for the proof.

The theorem states that we can infer the satisfaction of a formula on a
concrete system if it is necessarily satisfied on the abstract. Furthermore, if
the formula is not possibly satisfied on the abstract it will not hold on the
concrete either, so it can be refuted. For example, the two presented abstractions
(by homomorphism and by Galois Connection) prove: “It is possible to write
something if the buffer is empty” expressed as e ="*¢ (@)T, which means that
in the concrete system sg either satisfies (w(0))T or (w(1))T or (w(2))T or

Furthermore, we can prove on the abstract f £P%¢ (w)T which means that
in the concrete, all the corresponding concrete states satisfy neither (w(0))T nor
(w(1))T nor (w(2))T nor ...

In general, abstractions produced by using Galois Connections preserve more
information than the ones generated by homomorphisms, however the state space
reduction is stronger in the latter case. For example, the abstraction with the
Galois Connection can prove absence of deadlock since there is a must transition
from every state that may be reached, however the abstraction done by the
homomorphism is not able to prove the property for there is no must transition
from the state middle so we cannot infer the existence of some transition from
the related states in the concrete system.

Abstract approximations also preserve properties, this idea is stated in the
following lemma:

Lemma 7 Given two MLTSs P and Q, over the same sets of states and labels
S and A, with P g Q then for all p and q in S such that p < g and for all
formula ¢ then:

418 Jaco van de Pol and Miguel Valero Espada

- g e=>PEFy

~ g e =pHEE
This result is useful because, by performing symbolic abstractions (see next
section) we generate approximations of the minimal abstraction, so the lemma,

states that we can still infer the satisfaction/refutation of the properties from
the approximation to the original.

4 Process Abstraction

pCRL is a combination of process algebra and abstract data types. Data is
represented by an algebraic specification 2 = (X, E), in which X denotes a many-
sorted signature (S, F'), where S is the set of sorts and F’ the set of functions, and
E a set of X-equations, see [10]. All specifications must include the boolean data
type with the constants true and false (T and F). From process algebra uCRL
inherits the following operators: p.q (perform p and then perform ¢); p + g
(perform arbitrarily either p or ¢); 3 4.p P(d) (perform p(d) with an arbitrarily
chosen d of sort D); p < b 1> q (if b is true, perform p, otherwise perform q); p
Il q (run processes p and ¢ in parallel). § stands for deadlock. Atomic actions
may have data parameters. Every uCRL system can be transformed to a special
format, called Linear Process Equation or Operator. An LPE (see definition
below) is a single puCRL process which represents the complete system and from
which communication and parallel composition operators have been eliminated.

X(d: D)= ai(fild,e:]). X (gild, es]) < i[d,] > 8 (1)
i€l et E;

In the definition, d denotes a vector of parameters d of type D that represents
the state of the system at every moment. We use the keyword init to declare
the initial vector of values of d. The process is composed by a finite number I of
summands, every summand 4 has a list of local variables e,, of possibly infinite
domains, and it is of the following form: a condition ¢;[d, ¢, if the evaluation
of the condition is true the process executes the action a; with the parameter
fild, ei] and will move to a new state g;[d,e;], which is a vector of terms of
type D. fild,ei], gild, ;] and ¢;[d, ;] are terms built recursively over variables
= € [d, e;], applications of function over terms t = f (t') and vectors of terms. To
every LPE specification corresponds a labelled transition system. The semantics
of the system described by an LPE is given by the following rules:

— S0 = initp,
— s % & iff there exist 4 € [and e : E; such that ¢;[s,e] = T, a;(fi[s,e]) = a
and g;[s,e] = ¢

Terms are interpreted over the universe of values D. The following uCRL speci-
fication corresponds to the LPE of the example, in which the buffer is modeled
by a list:

Modal Abstractions in uCRL 419

X(I: List) = W(d).X (cons(d, 1)) < length(l) < N > 6+
d:D

R(head(l)).X (tail(l)) < 0 < length(l) > §

4.1 Abstract Interpretation of yCRL: Data Part

In order to abstract uCRL specifications we may define the relations between
concrete and abstract values by means of a mapping H : D — D or a Galois
Connection (o : P(D) — D,y : D — P(D)).

To abstract data terms, first a mapping ~ on (lists of) data sorts must be
prov1ded D represents the sort to which D is abstracted. We require that
Bool = Bool. Next, for each function symbol f, its abstract counterpart f
must be provided. In particular, if f : D — E then f : P(D) — 73(E) These
ingredients allow to extend ~ to data terms, by replacing all symbols by their
abstract counterpart. In particular, a data term ¢ : D with variables z : E is
abstracted to a data term : P(D) with variables Z : P(E).

We now explain why we lifted all symbols to sets of abstract sorts. For ex-
ample, in our buffer specification we may have a function S which computes
the successor of a natural number. The abstract version of S may be defined as
follows:

— For the homomorphism case: S (empty) = middle, S(middle) = middle or
5 (middle)= full. It will be undefined for full

— For the Galois Connection approach: S’(empty) = middle, §(mzddle) =
nonEmpty, S (nonFull) = nonEmpty, g (nonEmpty) = nonEmpty, S(full)
=T, S(_L) 1 and S(T)

Abstract interpretation of functions may add non-determinism to the system,
for example S (middle) in the homomorphism case may return different values
(middle and full). Furthermore, not all the sorts of a specification need to be
abstracted, for example, a predicate eﬁ;mf\y? applied to empty will return true,
however, applied to nonFull it can be either true or false. To deal with these
two considerations, we have lifted abstract functions to return sets of values. So
for the homomorphism case, S({middle}) = {middle, full}. For the Galois case,
S ({empty}) = {nonEmpty} and e@?(nonF ull) = {T, F}.

Not all possible abstract interpretations are correct; in order to generate
safe abstractions the data terms involved in the specification and their abstract
versions have to satisfy a formal requirement, usually called safety condition. The
condition for the homomorphism function and Galois connections are expressed
as follows (note that in the second case ¢ is applied pointwisely to sets).

— Homomorphism: for all d in D. H(t[ii]) et] {H(’cf)}]
— Galois connection: for all d in D.t[d] %= a(t[v(d)])

420 Jaco van de Pol and Miguel Valero Espada

4.2 Abstract Interpretation of puCRL: Process Part

We will now present a new format, the Modal Linear Process Equation (MLPE),
and the abstraction mapping from LPEs to MLPEs. An MLPE has the following

form:

X(@:PD) =) > alFlde])X(Gilde) aCild,ei]>6 ()
i€l e;:B;

The definition is similar to the one of Linear Process Equation, the difference
is that the state is represented by a list of powersets of abstract values and for
every i: C; returns a non-empty set of booleans, G; a non-empty set of states
and F; also a non-empty set of action parameters. Actions are parameterized
with sets of values, as well. From an MLPE we can generate a Modal Labelled
Transition System following these semantic rules:

- Sy = initmipe

- 8§44 9 iffthereexist i € I and e € E; such that F & Ci[S, €], A = a(F[S, e)
and S' = G;[9, ¢]

~- S 4, 8 iffthereexisti € [and e € E; such that T € Ci[S, €], A = a(F[S,€))
and §' = G;[S, €]

To compute an abstract interpretation of a linear process, we define the
operator “~": LPE — M LPE that pushes the abstraction through the process
operators till the data part:

p= X(t) then 5 = X(f) where X is a process name p = po.p: then P = Po.p1

p = a(t) then p = a(%) where a is an action label p=0thenp=4
P=po+..+pn then p=po + ... + pn P=X.ppthnp=33p
p=p <t D> pr then = p; <t > pr

MLPEs allow to capture in a uniform way both approaches: Galois Connection
and Homomorphism as well as the combination of both consisting in the lifting of
a mapping to a Galois Connection. The lifting is done by considering the abstract
domain as a lattice over the powerset of the abstract values ~ordered by subset in-
clusion and a (X)) will be defined as {H (z) |z € X} and y (X) as {z| H(z) € X}.
In the example, the abstract values nonEmpty and nonFull will be captured
by {middle, full} and {empty, middle} respectively. The successor of nonFull
will be the union of the successor of empty and middle: {middle, full}. In this
example, the lifting of the homomorphism saves the extra effort of defining ab-
stract functions. In case we use a plain homomorphism (without lifting it to a
Galois Connection), we restrict the semantics of the MLPE by letting So, 5, A
and S’ be only singleton sets. The MLPE below models the buffer example:

e — o~

X(@: P(List)) = S @(d). X (coms(d, 1)) <t length(D) < N > 6+
ab

7(head(l)). X (tail(1)) <0 < length(D) > 6

Modal Abstractions in uCRL 421

Just considering that all functions are pointwisely extended in order to deal
with sets of values, the above MLPE can be used equally for any kind of relation
between the data domains: homomorphisms, arbitrary Galois Connections and
lifted homomorphisms. The following theorem asserts that the abstract interpre-

tation of a linear process produces an abstract approximation of the (restricted)
minimal abstraction of the original.

Theorem 8 Let lpe be Linear Process Equation (as defined in (1)), mlpe a
Modal Linear Process Equation (as defined in (2)) and X an abstraction relation

between their data domains (where X is either a homomorphism or a Galois
Connection). Then if-

1. mlpe is the abstract interpretation of lpe (mlpe = lpe),

2 n/ll_ts\ is the concrete MLTS generated from lpe

8. mlts| is the (restricted) minimal w.r.t X of mlts

4. All pairs (f,F), (g,G) and (c,C) satisfy the safety condition.

- Mthe MLTS (nr/ll?s) generated from mlpe is an abstraction of m, i.e
(mlts| T4 mlts)

lpe mlts

lﬁe———v-m/l\t:sQ#m

The proof is done by checking that every may transition generated by the ab-
stract Modal Linear Process Equation has at least one more precise counterpart
in the (restricted) minimal abstraction of the concrete system (and the other way
around for the must transitions). By Theorem 6 and Lemma 7, we can prove
(refute) properties for lpe by considering mlpe directly.

5 The Bounded Retransmission Protocol

The BRP is a simplified variant of a Philips’ telecommunication protocol that
allows to transfer large files across a lossy channel. Files are divided in packets
and are transmitted by a sender through the channel. The receiver acknowledges
every delivered data packet. Both data and confirmation messages, may be lost.
The sender will attempt to retransmit each packet a limited number of times.
The protocol has a number of parameters, such as the length of the lists,
the maximum number of retransmissions and the contents of the data, that
cause the state space of the system to be infinite and limit the application of
automatic verification techniques such as model checking. Following the ideas
presented along the paper, we abstract the specification by eliminating some un-
interesting information. We base our solution on the uCRL model presented in

422 Jaco van de Pol and Miguel Valero Espada

the paper [11], in which Groote and van de Pol proved using algebraic methods
that the model is branching bisimilar to the desired external behavior also spec-
ified in uCRL. This proof requires a strong and creative human interaction in
order to be accomplished. However by computing an abstraction of the original
specification we can automatically model check some properties.

The system is composed by a sender that gets a file which consists of a list
of elements. It delivers the file frame by frame through a channel. The receiver
sends an acknowledgment for each frame, when it receives a packet it delivers
it to the external receiver client attaching a positive indication Iy, Iipn. or I,;.
The sender, after each frame, waits for the acknowledgments, if the confirma-
tion message does not arrive, it retransmits the packet. If the transmission was
successful, i.e. all the acknowledgments have arrived, then the sender informs
the sending client with a positive indication. When the maximum number of
retransmissions is exceeded, the transmission is canceled and I, is sent to the
exterior by both participants. If the confirmation of the last frame is lost the
sender cannot know whether the receiver has received the complete list, therefore
it sends “I don't know” to the sending client, Iz.

We are interested in proving that the external indications delivered by the
sender and the receiver are “consistent”. For that purpose, we chose an abstrac-
tion that abstracts away the data stored in the file and maps the list to three
critical values: abs_empty, abs_one, abs.more. The first one denotes the empty
list, abs_one when it has only one element, and abs_more when it has more than
one. The maximum number of retransmissions is removed (abstracted to a single
abstract value abs_N) which makes the sender to non-deterministically choose
between resending a lost packet or giving up the transmission.

The next table presents the abstract specification of the data and the ab-
straction mappings. The concrete specification of the list and the sort Nat are
standard. The function indl indicates by a bit whether a list is at its end (it is
empty or has only one element) or not.

sort abs_D, abs_Nat,abs_List tail(abs.more) =

func abs D :— abs D {abs_more, abs_one}
abs_N :— abs_Nat last(abs_empty) = {t}
abs_empty :— abs_List last(abs_one) = {t}
abs.one :— abs_List last(abs.more) = {f}
abs_more :— abs_List indl(abs_empty) = {e;}
succ : abs_Nat — P(abs_Nat) indl(abs_one) = {e;}
it : abs_Nat x abs_Nat — P(Bool) indl(abs_more) = {eo}
head : abs_List — P(abs-D) func H : List — abs_List
tail : abs.List — P(abs_List) H:D — abs D
last : abs_List — P(Bool) H:Nat — abs_Nat
indl : abs_List — P(Bit) var [: List

var [:— abs_List d,d' : D
m, 7 : abs.Nat m: Nat

rew succ(f) = {abs_N} rew H(empty) = abs_empty
It(m,) = {t,f} H(add(d, empty)) = abs.one
head(l) = {abs_D} H(add(d, add(d’,1))) = abs.more
tail(abs_empty) = {abs_empty} H(d) = abs.D
tail(abs_one) = {abs_empty} H(m) = abs N

Modal Abstractions in uCRL 423

This abstraction allows to reason about the execution of the final part of the
protocol without knowing the exact content of data files or the number of retrials.
For example the following safety property: “after a positive notification by the
receiver, the sender cannot send a negative one” is necessarily satisfied by the
abstract system. We express the property in the Regular Alternation-free p-
calculus, which is a fragment of the modal u-calculus extended with regular
expressions, as follows*:

[T% Ramay (-#, {Iok})"-(='S.%) *Snay ({Inok})' F

The following liveness property expresses that: “After a negative notification
by the receiver, there exists a path which leads to a negative or don’t know
notification by the sender”.

[T* ',Rvma.y(-*y {Inok})’] (,- *must,* ~(’Smust({Inok})’ \ 7Smust({1dk}),)) T

The next property is stronger than the previous, instead of only requesting that
there exists a path it states that the expected sender notification is inevitably
achieved:

[T Rumay (-, {Inok })'] BX (- #muse’) T A [2(*Smust({Tnok })" V *Smuse({1ax}))] X)

These three properties are necessarily satisfied in the abstract system, therefore
we can infer its satisfaction in the original one. However, the following property
which states that “after a positive notification by the receiver there ezists a
path which leads to a positive or don’t know notification by the sender” is not
satisfied in the abstract system. The reason is that we have abstracted away the
maximum number of retransmissions, therefore if all the acknowledgments are
lost the sender can retransmit the frames forever:

[T* -)R;niay(-*a {Iok})’] (,- *must Tk -(,Smust({Iak:})7 2 7S'rn.ust({Idk:]’)’)) T

Other papers have verified some properties of the protocol using abstract in-
terpretation, we refer among others to {17,?]. The approach of Manna et al. is
based on automatic predicate abstractions and is limited to the proof of invari-
ants. However Dams and Gerth propose a number of creative abstractions in
order to prove the satisfaction of some safety properties about the sequentiality
on the delivering of the frames.

6 Conclusion

In order to apply the abstract interpretation framework for reactive systems [5,
12] to uCRL processes, we extended it with the explicit abstraction of action
labels. This required non-trivial changes in most definitions. A uCRL specifi-
cation in LPE-form can be abstracted to a modal LPE; the state space of this
MLPE corresponds to a reduced MLTS, approximating the original LTS. This

* We have used the CADP model checker to prove the properties we describe, therefore
we present the formulas with the CADP syntax. The reader not familiar with the
logic can safely skip them.

424 Jaco van de Pol and Miguel Valero Espada

approximation can be used to verify and refute safety as well as liveness formulas
for the original system.

The resulting approach incorporates the homomorphism approach (which
is easier to understand and use) and the Galois Connection approach (which
preserves more properties, especially liveness properties). A user-defined homo-
morphism can also be lifted to a Galois Connection automatically, combining
ease with precision.

We already have a working prototype implementation, which will be de-
scribed in a separate paper. It is based on a projection of MLPEs to LPEs, in
order to reuse existing state space generation tools. We will apply the techniques
from [12] in order to translate the three-valued model checking problem to regular
model checking, in order to also reuse a model checker for the modal p-calculus,
e.g. CADP [8]. Another interesting question, optimality of abstractions, can in
principle be addressed along the lines of [5].

Our theory allows the collection of standard data abstractions with accom-
panying safety criteria proofs. Such abstraction libraries can be freely used in
various protocols, without additional proof obligations. This will enhance auto-
matic verification of protocols in specialized domains.

Model checking becomes more and more crucial for the correctness of soft-
ware, but in practice additional techniques, such as abstraction, are needed. This
may affect the correctness and modularity of the resulting verification methodol-
ogy and tools. We support modularity by implementing abstraction as an LPE to
LPE transformation, which can be composed freely by other existing transforma-
tions [1]. We feel that it is important to provide a rigorous basis for verification
technology, so we have checked the main part of the results in this paper in the
theorem prover PVS.

References

1. S.C.C. Blom, W. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and J.C.
van de Pol. uCRL: A toolset for analysing algebraic specifications. In CAV, LNCS
2102, pages 250254, 2001.

2. 8.C.C. Blom, J.F. Groote, L.A. van Langevelde, B. Lisser, and J.C. van de Pol.
New developments around the uCRL tool set. In ENTCS 80, 2003.

3. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In
TOPLAS, ACM 16, pages 1512-1542, 1994.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL,
ACM, pages 238-252, 1977.

5. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology, 1996.

6. D. Dams and R. Gerth. The bounded retransmission protocol revisited. In ENTCS
9, 2000.

7. A. Fantechi, S. Gnesi, and D. Latella. Towards automatic temporal logic verifica-

tion of value passing process algebra using abstract interpretation. In CONCUR,
LNCS 1119, pages 562-578, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Modal Abstractions in uCRL 425

J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP - a protocol validation and verification toolbox. In CAV, LNCS 1102,
pages 437-440, 1996.

. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking

using modal transition systems. In CONCUR, LNCS 2154, pages 426-440, 2001.
J. F. Groote and A. Ponse. The syntax and semantics of uCRL. In ACP, Workshops
in Computing Series, pages 26-62, 1995.

J. F. Groote and J.C. van de Pol. A bounded retransmission protocol for large
data packets. In AMAST, LNCS 1101, pages 536-550, 1996.

M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: a foundation
for three-valued program analysis. In ESOP, LNCS 2028, pages 155-169, 2001.
N. D. Jones and F. Nielson. Abstract interpretation: A semantics-based tool for
program analysis. In Handbook of Logic in Computer Science, pages 527-636. 1995.
D. Kozen. Results on the propositional p-calculus. In ICALP, LNCS 140, pages
348-359, 1982.

K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages 203-210.
IEEE, 1988.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design 6, pages 11-44, 1995.

Z. Manna, M. Colon, B. Finkbeiner, H. Sipma, and T. E. Uribe. Abstraction and
modular verification of infinite-state reactive systems. In RTSE, LNCS 1526, pages
273-292, 1997.

S. Owre, S. Rajan, J.M. Rushb, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and mode] checking. In CAV, LNCS 1102, pages 411-
414, 1996.

J.C. van de Pol and M. Valero Espada. Modal abstraction in pCRL. Technical
Report SEN-R0401, CWI, 2004.

